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Evaluation of Phase Integrals for Volterra Systems 
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A general method is presented for the evaluation of phase integrals of the 
Volterra model of stable predator-prey interactions for any fixed number 
N I> 2 of interacting species. The method is based on a bijective transforma- 
tion of trajectory surfaces onto a flat hyperplane in Euclidean N-space, 
parametrized by a new set of dynamical variables in terms of which integra- 
tion over the surface is straightforward. Expressions are displayed-for the 
surface area of the trajectory surface and for the volume contained within 
this surface, quantities which are known to play an important role in the 
description of the statistical properties of Volterra trajectories. 

KEY W O R D S  : Volterra system; A/interacting species; evaluation of phase 
integrals; coordinate transformation. 

1. I N T R O D U C T I O N  

This is the first in a series of  papers dealing with properties of  the model  for 
interacting preda tor -prey  systems in nature defined by Volterra 's  equations. 
These systems are striking in the extent to which results of  the formalism of  
statistical physics carry over directly to problems of  populat ion dynamics. (1-4> 
Because they define for populat ions quantities analogous to the Hamil tonian 
energy, the temperature, and the entropy, i.e., cardinal quantities in the 
characterization of  the macroscopic  behavior o f  physical systems, these 
results suggest potentially powerful new methods for the study of  populations.  
The present series is concerned with the application of  such methods to obtain 
direct experimental tests of  the Volterra model,  as well as to indicate ways of  
deriving f rom it laws of  popula t ion behavior which probably  transcend the 
dynamics of  the model  itself. 
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We sketch the analogy between a Volterra system and a classical mech- 
anical system. Volterra's equations are a system of N first-order nonlinear 
differential equations expressing the time rate of change of the population 
numbers of the N individual interacting species. They represent the equations 
of motion. Volterra (7~ himself discovered in integral of the system, analogous 
to the Hamiltonian. It is the work of Kerner which initiated the present 
direction of research. He demonstrated, first, that one could transform 
Volterra's equations such that the induced dynamical flow was measure- 
preserving on the new phase space, in analogy to Lionvitle's theorem. 
Assuming the ergodic hypothesis, he then replaced time averages with phase 
averages with respect to the microcanonical density and obtained important 
results about the moments of the distribution of population numbers with 
standard methods of the microeanonical formalism. Finally, he pointed out 
that for systems of many interacting species, the Volterra integral partitions 
into small and large components in the manner required to apply the transi- 
tion from microeanonical to canonical systems developed by Khintchine. (5~ 
He then applied canonical formalism to calculate time averages of func- 
tions of individual species numbers in the population. Recently, Goel et al. (1~ 

made a fundamental contribution to this program in providing a systematic 
means of analysis of Volterra's equations to determine whether a given 
population is stable or whether it tends in time to the extinction of some of its 
species. 

The task of the present paper is to obtain a form of the phase integrals of 
Volterra systems of N interacting species, for arbitrary N, in which they can 
be readily evaluated. Need for solution of this problem arises directly in 
attempts to compare the predicted behavior of Volterra sysfems with popula- 
tions in nature. Volterra's equations contain N ( N  + 3)/2 independent 
parameters. Although in principle these parameters can be expressed in terms 
of quantities estimated from population data by means of the methods of 
statistical mechanics, such methods introduce phase integrals not soluble by 
quadratures which effectively block application of the expressions. In the 
following paper, we shall use the results found here to obtain soluble ex- 
pressions for the five model parameters of the two-species model. These 
expressions provide direct tests of the Volterra model for the two-species case. 
The main utility of these solutions probably lies beyond the testing of the 
Volterra model itself, however. At the present level of understanding of 
population dynamics, there is nothing known which Corresponds to either the 
laws of thermodynamics or phase functions useful in characterizing popula- 
tion behavior. We expect that the appropriate role of the Volterra model is 
that of any such population model, i.e., that it suggest which functions 
ought to be studied for the purpose of writing general laws of population 
behavior. For example, the quantities formally equivalent to the temperature 
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and entropy of physical systems, which appear in the expressions for the 
parameters of the two-species case, are phase integrals. The capacity to 
evaluate such integrals is essential to this approach. 

2. A N A L Y S I S  

The Volterra equations for N interacting species, (6) 

N 

dNdd t  = k,N~ + f l ;1  ~ a~jN, Nj ,  i = 1 .... , N (1) 
. /=1  

' ' i , j =  1 . . . .  , N  

state the time rate of change of the numbers N~ of organisms of the ith species 
in terms of: (a) rate constants k~, positive for prey and negative for predator, 
characterizing the (exponential) growth or decline of the individual species 
in isolation, (b) an N • N interaction matrix (~j) subtracting an interaction 
term from the growth rates of prey and adding to those of predators; and 
(c) scaling constants fi~, measuring, heuristically, the numbers of prey lost for 
gains in single predators, so chosen that by definition the matrix (a;j) is 
completely antisymmetric. For convenience, we absorb the scaling constant 
by the transformations 

x ,  = ~ , N , ,  ~,j  = (f l=/3j)- l~;  s 

and write the Volterra equations as 

N 

dx, /d t  = k,x~ + ~ a~jx~x~, i = 1,..., N (2) 
d = l  

a~j = - a y t ,  i , j  = 1 .... , N 

We consider only solutions in which no species goes to extinction in the 
process of time evolution, i.e., cases in which the dynamical variables x~ are 
bounded away from zero from below. With this assumption, a necessary and 
sufficient condition for the existence of fixed points of Volterra's equations is 
clearly 

N 

k,  + ~ ai jxj  = O, i = 1,..., N (3) 
] = 1  

Let any solution x of this condition be denoted by the vector q. Then systems 
with the initial conditions x, = q~ for all species are static throughout time. 
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If  a system admits a fixed point, another transformation of Volterra's equa- 
tions is useful. Define y~ = x, - q,. Then 

N 

aydat  = ~ a~jxiyj = a x J d t ,  i = 1,..., N (4) 
y = l  

Existence of a fixed point leads directly to an integral of Volterra's 
equations. (7> In fact, define G = G(x) by 

G =  ~ q ~  X ~ _ l o g X ~ _  1 (5) 

Then 

- ~  = x~ d---i- = a~jx~xj = 0 
~=1 id=l 

the final equality following from the antisymmetry of the matrix (~j). We 
mention that the function G defined here differs from that usually given in the 
literature by the constant ~ =  1 q,. The function G will play the role of the 
Hamiltonian in the formalism. 

Application of the methods of statistical mechanics in calculation of the 
long-time averages of phase functions requires that the Volterra system 
satisfy the ergodic hypothesis. To this purpose, Kerner (a) introduced a new 
set of dynamical variables v, = log(xJq,) ,  i = 1,..., N .  The transformation 
x ~ v is one-to-one onto its range because of the monotonicity of the log 
function. Note that, since Volterra's equations are a system of N first-order 
equations, their solutions may be represented as trajectories in a Cartesian 
N-space with either x or v as coordinates. We denote by X this v-space, which 
is suitable for ergodic theory. Kerner then showed that the Volterra trans- 
formation is (Lebesgue) measure-preserving on X. If, moreover, the system 
is metrically transitive on surfaces of constant G, then the ergodic hypothesis 
is satisfied, and to within a set of initial phases of measure zero one may 
equate, using the results of Khintchine, (5) 

< f ) t  = lira t -1 f dt = a -1 f aa ,-~| o=o~ [VG---~ a s  = <f> (6) 

for any absolutely integrable (L1) function f .  Here, the function ~ = ~(G) 
is the normalization to unity. With respect to this assumption, Goel et al. ~) 

demonstrated that the linear approximation of the Volterra system is ergodic 
in the limit of large N. We shall show in the following paper that the 2-species 
(nonlinear) Volterra system is rigorously ergodic. For arbitrary N, we shall 
assume the ergodic hypothesis to obtain. 

Expressions for the mean and mean-square oscillations of a Volterra 
system of arbitrary N, found by replacing the time average with the phase 
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average as in Eq. (6), have already been given in the literature. We display 
these calculations here because they illustrate the central problem in the 
Volterra analysis which has led to the task of the present paper. For the mean, 
note, then, that 

(Y')  = ~2(g) G=g~ !VG--~ as  = ~(g)  .= a=g, 

1 , ~ f ~  a ( 8 , , ) d r =  0 (7) 
C~(g) = ~=~1 Uvj 

where d& is the ith component of the surface element of the closed surface 
[G = g]. We observe that aG/av~ = y,. But if (y~) = (x~ - q,~ = 0, then 
(x,) = q,. This result is due to Kerner. (a) The intensity or mean square 
oscillauon is 

1 ft 7'2 1 ~ f  t 1 f t x ,  dv <y2> = ~ ~=~ lVC---i a s  - a ( g )  ~=, 0=~ y, s,, d& = ~ ~ = . ,  

This integral may be evaluated by means of the fact that 

ft  1 d ft f dv (8) 
~ = ~  IvG---[ a s  = ~ o=,1 

for any L1 function f ,  a result due to Khintchine (5> which we shall use in a 
critical way below. In the present instance, 

x, dv = I VG---- ~ dS = q,f~(g) 
G=.q] G=g] 

Hence, 

x, dv = ~(g)  fta=~] , ( g )  dG = ~f[~.] dv 
Denoting the integral over the volume enclosed by the constant-G surface by 
w ,  

W(g) = _ fe=~j dv 

we obtain finally 
(y,=) = q,W(g)/f2(g) (9) 

This result, obtained in a different way, is given by Goel et al. <~> 
These results, derived by use of Gauss' theorem and the relationship 

between y, and the gradient of the function G, are a standard calculation in 
classical statistical mechanics. For the mean, they carry through to a numerical 
result. However, for any higher moment, including the mean square, they 
introduce integrals such as W and f~ which cannot be evaluated without 
explicit parametrization of the trajectory [G = g] in terms of the arc length. 
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The major analytical task in the following, to which we now turn, will be to 
obtain this parametrization. For the sake of conceptualization of the approach, 
we shall divide analysis into the cases N --- 2 and N > 2, solving the former 
completely before proceeding to the general case. This division has the further 
utility that it is the two-species case alone that is the subject of the following 
paper. 

Define, then, the transformation ~ = q~(eV~ - v~ - 1), i = 1, 2, and 
denote by Y the Cartesian 2-space with coordinates (~1, ~2). In terms of the 
new coordinates, the invariance condition on G becomes G = fl  + ~ ,  

,identifying G as just the scalar invariant of the vectors ( f l ,  ~2) and (1, 1) in Y. 
Hence, the set [G = g], for any g > 0, is the straight line in Yof  slope ( -  1) 
with intercepts (0, g) and (g, 0), respectively. In order to trace the Volterra 
trajectory along the line f2 -- g - ~1, we elaborate the major  properties of 
the transformation v ~ ~. Observe, first, that the trajectory in Xis an analytic 
closed curve about the origin. In fact, the rate of change of the slope in X is 

( d / d t ) ( d v 2 / d v l )  = - ( d / d t ) ( y l / y 2 )  = - ( , z ~ 2 / y 2 2 ) ( x ~ y l  2 + x ~ y 2 2 )  (10) 

Since the x~ are bounded away from zero below by hypothesis, the right-hand 
side always has a sign opposite to that of c~12. If we arbitrarily take species 1 
as predator, once and for all, then czz2 > 0. With this convention, the rate of 
change in slope then exists and is nonpositive throughout the motion. Since 
G = 0 at the point (0, 0), the origin cannot lie on any trajectory for G > 0. 
The conclusion then follows from the fact that in each quadrant of X, to any 
value of G > 0 there corresponds at most one value of v~ (resp., v2) for any 
fixed value of v2 (v~), as we now show. Indeed, we obtain the more general 
fact that the mapping v ~ ~ on each of the four quadrants of X is one-to-one 
onto the closed triangular area defined by the coordinate axes and the line 
[G = g] in Y. Note, first, that since d ~ d d v  ~ = q~(eV~ - 1) = y~ and d 2 ~ / d v  2 = 

q~e ~, = x~ > 0, the graph of ~, against v~ has a single minimum, zero, at 
x~ = q~, and is everywhere convex dow.nward. Hence only nonnegative values 
of ~, correspond to real roots v~. Moreover, to each positive value of ~, there 
correspond exactly two roots v,, one positive and one negative. We denote 
these roots by v, + and v,-, respectively. The value ~, =- 0 has the single root 
v, = 0. The absolute values of both roots v, ~ increase monotonically with 
increasing ~,. This assures in the above that the trajectory is closed in X. 
Now fix any g > 0. Since ~2 = G - r ~2' < ~2 for any g' < g, and there- 
fore Iv2 ~ ] < ]v~ ~ ] for all fixed v~ + or v~-, and similarly [v'~ 1 < [v~i  for all 
fixed v~ + or %- .  It follows on inspection that the trajectory [G = g,] is 
completely contained within the trajectory [ G - - g ]  in X. Obviously the 
triangle formed with the coordinate axes by the hypotenuse [G = g'] is 
contained within that of the hypotenuse [G = g] in the first quadrant of Y. 
Now, each point in the first quadrant of Y lies on a unique line of the form 
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[G = g], for some g, i.e., on a unique trajectory, and conversely each point 
in X lies on a unique trajectory. The mapping v ~ g is therefore onto. More- 
over, since (v[ § v; § # (vl +, v2 § implies that ~' # ~, the mapping on the 
first quadrant of X is one-to-one onto Y. The same conclusion applies to each 
of the other quadrants by change of sign choice. This completes the proof of 
bijection. Finally, it follows immediately from the preceding that the area 
contained within the trajectory [G = g] in each quadrant of X maps onto 
that within the triangle with hypotenuse [G = g] in the first quadrant of Y. 

We have found that the phase point in Xmoves continuously in a closed 
trajectory about origin, in fact, in a clockwise direction with the above 
species designation. Transforming this result, we now find that the phase 
point initially at (g, 0), say, in Y moves up the line ~2 = g - ~1 to (0, g), 
then back to its starting point, then up and back again, for each single passage 
about the trajectory in X. From Eq. (10) and the proved inclusions, we also 
obtain the fact, important in ergodic theory, that the area contained within 
the trajectory G = g in X is a simply connected, convex body. That is, if any 
two points both lie inside the trajectory, then all points on the straight line 
connecting them also lie within the trajectory. The same fact is clearly true of 
the triangles defined by trajectories in Y. Moreover, the area (Lebesgne 
measure) contained within the trajectory, in either space, is a monotone 
increasing function of G. 

Having transformed trajectories into straight lines with the mapping 
v ~-~ ~, whatever their shape in X and for any value of G, we can now write on 
inspection an additional transformation to a coordinate system which com- 
pletes the parametrization of the trajectory, Indeed, fix any point (~z, ~2) in 
the first quadrant of Y, and construct the straight line of slope ( - 1 )  that 
passes through this point. Let r be the perpendicular distance of this line from 
the origin, and let z be the length along this line from its ~2 intercept to the 
given point (~1, ~2). The transformations defined in this way are ~ = 2-~J2z 
and ~2 = 2-~/2(2~I2r - z). We observe that a point (r, z) lies on the trajectory 
[G = g] if, and only if, r = 2-1~2g. Moreover, one sweeps the entire area 
[G < g] exactly once in each of the four quadrants by allowing z to vary from 
0 to 2~/2r, and r from 0 to 2-1/2g, holding to a particular sign choice of the 
roots (vz, v2), and in all four quadrants by a fourfold integration, once for 
each choice of paired signs. 

We write the general phase integral in terms of the coordinates (z, r). 
For the right side of Eq. (8), we have 

. a ( v ~  ~, v2 ~) 

~.2112g 
= )o f (g ,  z) a(vz:~' v2~) ~(r, z) dz (11) 
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where ~(vl ~, v2*)/O(z, r) = (yly2) -1 is the Jacobian of the transformation 
v ~ (z, r), and where the notation indicates, in an obvious way, the required 
fourfold integration just described. We note, for future reference, that the 
Jacobian of the transformation ~ ~ (z, r) is one, The expectation value of a 
phase function f becomes 

1 ~21,2a f(G, z) 
( f>  = ~Jo  YI:~Y2 ~ 

dz 

211~ ~a [f(y~ +, y2+) f(Y~ +, Y2-)  + f ( Y ~ - ,  Y2-)  
= "n Jo [ Yl+Y2 + " Yl+Y2 - Y l - Y 2 -  

f(Yl-, Y2 +) 
Yl-Y2 ] (12) d ~  

In the very important case of the normalization constant fl = <1>, we 
write Eq. (10) in a different form to avoid improper integrals. Noting that 
dz = 2 I/2 d~l = - 2  ~/2 d~2 and d~, = y~ dv, = xT~(xj - qj) dx, ( i , j  = 1, 2; 
i # j) ,  we find 

1 fa'2 1 f~'2 1 2-112rs~t2a dz = ~ d~ + ~ d~2 
o YlY2 ~o YlY2 ~o YlY2 

( ( ~2=~ I ~t=e/2 1 dxl + 
,o Xl(X2 -- q2) .'o x2(xl - ql) dx2 

(13) 

for any sign choice. Since x~ approaches q~ only as ~j approaches G, i # j, 
both integrals on the right are proper. The full integration for f2 is just the 
sum over four such pairs, corresponding to the four. choices of paired signs. 

Since we cannot simply invert y~ = q~(eV~ - 1), these integrals are still 
not soluble by quadratures. They are, however, in a form which readily admits 
numerical evaluation. Equation (10) thus completes the task of this paper for 
the case N = 2. 

We now treat the N-species case, for arbitrary N, by straightforward 
extension of the analysis for two species. Since the discussion of coordinate 
transformations is necessarily complicated, let us relate it to a common 
problem in multiple integration with which it is directly analogous. It is 
desired to calculate surface and volume integrals in v-space on the domain 
contained within the surface [G = g]. We suspect, and shall demonstrate, 
that the domain is a convex body, but its shape is an unseemly "lopsided egg" 
(see the figures in Ref. 1) if N = 2 and is unknown altogether if N > 2. The 
problem is nevertheless analogous to the calculation of surface and volume 
integrals on a sphere about the origin in 3-space. This is a difficult problem in 
rectangular coordinates because the equation describing the spherical surface 
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mixes the coordinates of integration in such a way that the limits of integra- 
tion in one variable depend on the other variables. It is a simple calculation in 
spherical polar coordinates because here the radial vector, varying over 
known limits, fills the sphere with disjoint spherical shells, while the angular 
variables, for any fixed value of r, parametrize the spherical shell corre- 
sponding to that value of r and sweep, for known limits, independent of r, 

that entire shell. In the following, we accomplish the same thing for the 
Volterra surface [G = g]. First, we transform into a coordinate system in 
which the surface [G = g] is necessarily a flat hyperplane of known orienta- 
tion in N-space. The volume contained within the surface in v-space trans- 
forms to the volume of the first quadrant of the range space contained within 
the hyperplane. The problem at this point is analogous to that of the sphere in 
rectangular coordinates, i.e., integration within a surface of known shape but 
with respect to a coordinate system which does not conveniently describe the 
surface. We then transform to a second coordinate system in which N - 1 
coordinates parametrize the hypersurface, while the Nth coordinate trans- 
lates the hypersurface throughout the volume over which integration is to be 
performed. Thus, the N -  1 coordinates correspond to the angular coor- 
dinates in the integration of the sphere, and the remaining coordinate to the 
radius. 

As in the two-species case, define now the coordinates ~i = qi(e  v~ - v~ - 

1), i = 1 .... , N. The set of all points (~1,..., ~ )  in the Cartesian N-space, Y, 
say, with axes ~1 ..... ~N that satisfy the condition G = ~ =  1 ~ = g is a plane 
orthogonal to the vector (1,..., 1). Fix any point P in the first quadrant of this 
space. Let r be the perpendicular distance, in the Euclidean metric of the 
space, from the origin to the plane parallel to [G = g] that passes through P. 
Construct the planes of the form ~ = const, i = 1,..., N - 1, which contain 
P, and let z~ be the length of the line segment from the axis fu to the ith such 
plane along the intersection of the ~ - fz~ coordinate plane and the plane 
[G = g]. The transformations for the zt are z~ = 2~/2f~, i = 1 .... , N - 1. 
The transformation for r is r = (~=  z ~) sin tg, where t~ is the angle formed 
by the vector (1 ..... 1) with the coordinate plane ~N = 0. To find sin ~, we 
denote by r = (a,..., a) the vector normal from the origin to the plane 
[G = g]. The components a, which are identical for all N coordinates by 
symmetry, are to be determined. Now ~ = (a ..... a)(0 ..... 1,...,0) = a, 
i = 1 ..... N. Since the point (a ..... a) lies in the plane [G = g], the vector 
with components ~:~ = a must satisfy the defining condition of the plane, i.e., 
~ =  ~ ~ = N a  = g.  Then r = (~.~= ~ a2) 112 = N - 1 / 2 g .  It follows from simple 
geometry that sin ~ --- r i g  = N - ~ / 2 .  Hence, the transformation from g to r 
is r = N -I/2 ~.~=1 ~- 

The coordinate (z~,..., zu_~, r) = (z, r), for any r, are a suitable para- 
metrization of the states of the N-species Volterra system. Indeed, the proof  
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that the mapping v ~ (z, r) from each quadrant of X onto the first quadrant 
of Y is one-to-one is exactly analogous to that for the two-species case. 
Conversely, each point in the first quadrant of Y corresponds to 2N points in 
X, one for each choice of signs of the two roots of the N equations 
~ = q ~ ( e ~  - v~  - 1). 

The Jacobian of the transformation v ~ ~, with elements 8v~/~ s = 

ys ~ 3~j, is diagonal with value (Yl "'" YN)- 1. The transformation ~ ~-> (z, r) 
has Jacobian with elements 8~/~zj  = 2 -~12 3~j, i , j  =1,...,  N - 1, and 
~ / ~ r  = N ~/2 3~, i = 1 .... , N, which is diagonal with value (N/2N-~) 1/2. The 
Jacobian of the full transformation v ~ (z, r) is the product of the two, with 
value (N/2  N- 1)112(yl... y~) - 1 

The phase average of an arbitrary L1 function of a Volterra system of N 
species is therefore 

( f )  = (N/2U-2) 1~2 . . . .  d~N-1 (14) 
Yl Y~-2 Jo Y~- lYN ~ 

where the notation indicates a sum over 2 ~ integrals of the form on the right, 
one for each choice of signs, each integral weighted by + 1 if the number of  
negative roots is even and - 1 if the number is odd. l f f i s  a linear combination 

~N of products of  powers y ~  ... YN, then Eq. (12) assumes the simple form 

Jo ~ <f)  = (N/2~-~)~,~ [ ( y l + ) , ~  - 1  _ ( y l . ) ~ - ' q  

�9 .. [ 0 , ~ + ) - ~  - 1  - ( y N - ) " ~ - q  d ~  ..- d ~ _ ~  ( 1 5 )  

The proof  of  convergence for the case n~ = O, i = 1 ..... N, is directly analo- 
gous to that for the two-species case. We note that any continuous func t ion f  
on Y may be approximated, with arbitrary precision, by a linear combination 
of this form (Stone-Weierstrass theorem). This completes the task of the 
present paper. 
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